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Crystallographic Computational Infrastructure

One of the requirements for the next generation of small molecule 
crystallographers is a mathematical programming infrastructure, an easy 
and efficient means where crystallographers test their own ideas, 
construct new algorithms and make them available quickly to the whole 
community. 
Having such an environment will allow building large and maintainable 
models for structure determination and analysis that can be adapted 
quickly to new situations.
We have made a concerted effort to this end and have started to 
implement the required infrastructure for computational crystallography 
including, but not limited to : 

- Algebraic modelling language for crystallography
- Automatic differentiation
- Structure factor calculation 
- Nonlinear least squares 
- Fourier maps and
- Parameter refinement …

A simple Program in Algebraic NotationA simple Program in Algebraic Notation : : 
Fit plane to data points in 3D 
Conceptualisation:  Minimize Perpendicular Distance Points to Plane
In a  traditional informal algebraic description, the implicit equation for 
a plane in 3D space is  : ax+by+cz+d=0. 

If the plane is not vertical  (i-e: c not 0)  the equation reduces to:
ax + by + z +d =0 

The distance of a point (x,y,z) to the plane along a normal to the plane is: 
Distance = | a * x + b * y + z + d | /  sqrt(a^2 + b^2 + 1)

The model minimises the sum of the squared distances.

Implementation in C++ Using the Implementation in C++ Using the SmxSmx Library :Library :
//All we need is to define the template function to use in Least Squares
template<class num_t>
num_t funcLine ( Array2d<num_t> &p , Array2D<> &data)
{   // return distance

return abs(p[0]* data[0] +  p[1]* data[1] + data[2]  + p[2]) / 
sqrt( p[0]*p[0] + p[1]*p[1] +1);

}
…
// instantiate the least squares object using the template function with 
// optional arguments:  

nl_lsq<funcLine> lsq(data_points, m, n, need_covar, max_iter);
//  generates the lsq object, the function and its gradient
//  then we call for minimisation

ret = lsq.minimise( Observation,  Parameters );

Algebraic ImplementationAlgebraic Implementation

observation x, y, z;
parameters a,  b, d;       
//minimise  sum {overall observation } ( obs - calc)^2        

residual:  
abs( a * x + b * y + z + d )/ sqrt(a^2 + b^2 + 1);

// reads data points  x y z from ‘experiment.dat’ file
data “experiment.dat”;

// then we call for refinement
refine;
print a,b,c; Modelling Language for Crystallography 

(Smx.interpreter)
A built-in algebraic modelling language designed around a familiar 
crystallographic notation, including an interactive command environment, 
to help with the formulation of problems. It includes a full-featured 
programming language; possesses a complete set of looping and 
conditional statements and allows the crystallographer to formulate 
algebraic models for structure determination and analyse data in a clear 
and concise way. The model is used then as a basis to generate a
mathematical representation that can be relayed directly to the 
optimisation solver.

Refinement and NLS Model Formulation

We consider a general LS model form defined by:
1. X  refineable parameter n-vector,  in  n-space Rn;
2. Yo observation vector  
3. W    weight vector   
4. Y(x) estimated  function, f: Rn =>   R1;
5. D  set of admissible parameters, a subset of Rn;   defined by:

- l, u explicit, n-vectors finite bounds of x (an embedding ‘box’ in Rn) ;
- g(x) general nonlinear constraint functions, 

g: Rn =>   Rm. (could be empty)
Applying the notation given above, the least squares method is stated 

as minimisation  of the objective function :    
M(x) = sum { overall } W.(Yo – Y(x))^2.

minimise : M(x)   
s.t :            x in D = { x:   l ≤x ≤ u  and g(x) ≤0} 

where vector inequalities are component-wise

Whether we use C++ or the algebraic model, this environment 
provides an easy and natural way to formulate general nonlinear 
least squares problems required by small molecule crystallography.  
The refinement can be performed simply by specifying the 
expression form of the function to be fitted to the data, the desired 
residual/objective, as well as constraints and restraints (if any) in an 
algebraic notation, without having to indicate anything about the 
partial derivatives that a solver might require.

Solvers

Conventional crystallographic solvers are built-in; however, the open 
architecture has also enabled some useful external and modern non-
linear solvers to be successfully interfaced to the system. 

Solvers included:
- Normal matrix / LU /QR decomposition / SVD, CGradient,
- Generalized Minimum RESidual (GMRES)
- Levenberg - Marquardt non-linear minimisation with bounds on

the parameters or linear constraints
- LBFGS                with bounds on the parameters
- and  IpOpt with bounds and general constraints

SF Least Squares Snippet Simple Code in C++:SF Least Squares Snippet Simple Code in C++:
{   

//  smx::sfls::param_anisotropic_anamalous<int sgnumber=-1> 

smx::io:cif::CifReader cif( ciffilename );
ScattererList Atoms(cif) ;     // + optional Atoms settings, filter ...  

// instantiate the SFLS class using functor param_anisotropic_anamalous<>
// and read any extra param from cif, e-g :OverAllscalef, xFlack_param …

smx::sfls:: SfLs< param_anisotropic_anamalous<> > sfls(Atoms, cif); 

bool refine_f_square = true;
Reflection hkl(hklfile);     //  + optional hkl settings ... 

sfls.fix_scalefactor();
//  Special postions and adp beta-restrictions constraints are handled internally
sfls.refine_positions();     // all positions 
sfls.refine_uij();           // all adps
sfls.refine_biso("C3"); // refine atom C3 as isotropic 
sfs.set_constraint_eval_jac( eval_jac_g); //  eval_jac_g() functor returns the sparsity structure
// of the Jacobian of the constraints, or the values for the Jacobian of the constraints at the point x.

sfls.refine( hkl, refine_f_square );
} 

Structure Analyst End-users, Research Crystallographers or Crystallographic Programmers
Once completed, it will be a fundamental building block which will facilitate high quality analyses, 
helping to develop and explore the full capability of crystallography upon which other researchers can 
build new applications

This system is designed to facilitate the solution of nonlinear least squares  and to support 
the whole crystallographic modelling life-cycle (building – refining – analyzing – revising). It 
is by supporting C++ interfaces and the algebraic modelling for crystallography that this 
platform will be accessible by all users including:

Example of implicit linear constraint within the smx.Interpreter:
Consider an atom disordered on 2 positions C1 and C2. The refinement of the site occupation factors should be 
subjected to the constraint:    

Occ1 + Occ2 = 1 # where Occ1, Occ2 are parameters
Or by using suffix : 

Sites[“C1”].Occ + Sites[“C2”].Occ = 1;    # where Sites is a set of parameters

This environment enables the user to specify any kind of 
relationship between the conventional crystallographic 
variables and any novel ones they need to introduce. The 
user will find it easy to create crystallographic models of 
great complexity with only a few statements.

# Declares 2 parameters
# Simply assigned values initially 
# Can be overwritten

# Invoke reverse sweep 
# and reclamation of memory 
# p(value, adjoint) will hold current value 
and adjoint w.r.t. last computed param_t

Example: Use of AD with smx.interpreter
{
parameter p, p2
p = 0.2; p2=6
p = f ( p2 ) * exp(p )

differentiate()

print “r p : “ ,  p   
}

Example with C++ 
{ 

smx::ADparam::param_t   p,p2;   
p = 0.2; p2=6;                                  
p = f ( p2 ) * exp(p );     

smx::ADparamEnv::differentiate();

cout << p << endl;
}

Using the meta-programming and template models for all known expressions, we have created a 
building block that integrates the AD package and allows all LS refinement, while taking care of 
many of the details that formerly had to be specified by the user. The user is now free to 
concentrate on the broader aspects of their problem. 

Structure Factor Computation  
This generic  implementation results in more computation efficiency by making use of the structure 
factor expression found in International Tables for all the space groups, when identified as 
template argument, and by generating the corresponding code, so avoiding a general form 
calculation. 

Automatic Differentiation:

Automatic differentiation (AD) is a technique for computing derivatives accurately and 
efficiently. Uses include: solving nonlinear equations, Sensitivity Analysis (first order), 
Parameter identification, Optimization and useful in Verification and Validation. Furthermore, 
no limits are imposed on the length or the complexity of the code comprising the function to be 
differentiated. Thereby, AD becomes essential and the most important tool in mathematics and 
scientific programming.
AD Implementation
C++ specialised overloading operators and templates have been used to implement and 
employ the reverse mode AD technique, which is the best known alternative to the forward 
mode. Derivatives are accumulated in the reverse order of program execution. Since this 
mode needs runtime tracing to store intermediate quantities that are required in the backward-
pass, we have integrated a specialized memory manager/allocator to our implementation.


