
This work is funded by EPSRC grant number EP/C536282/1

COMPUTATIONAL INFRASTRUCTURE FOR BRIDGING THE GAP COMPUTATIONAL INFRASTRUCTURE FOR BRIDGING THE GAP
BETWEEN PREVIOUS AND FUTURE GENERATIONS OF BETWEEN PREVIOUS AND FUTURE GENERATIONS OF

CRYSTALLOGRAPHERS. CRYSTALLOGRAPHERS.
Mustapha Sadki, James Haestier, Amber L. Thompson and David J. Watkin,

Chemical Crystallography Department, University of Oxford.

Crystallographic Computational Infrastructure

One of the requirements for the next generation of small molecule
crystallographers is a mathematical programming infrastructure, an easy
and efficient means where crystallographers test their own ideas,
construct new algorithms and make them available quickly to the whole
community.
Having such an environment will allow building large and maintainable
models for structure determination and analysis that can be adapted
quickly to new situations.
We have made a concerted effort to this end and have started to
implement the required infrastructure for computational crystallography
including, but not limited to :

- Algebraic modelling language for crystallography
- Automatic differentiation
- Structure factor calculation
- Nonlinear least squares
- Fourier maps and
- Parameter refinement …

A simple Program in Algebraic NotationA simple Program in Algebraic Notation : :
Fit plane to data points in 3D
Conceptualisation: Minimize Perpendicular Distance Points to Plane
In a traditional informal algebraic description, the implicit equation for
a plane in 3D space is : ax+by+cz+d=0.

If the plane is not vertical (i-e: c not 0) the equation reduces to:
ax + by + z +d =0

The distance of a point (x,y,z) to the plane along a normal to the plane is:
Distance = | a * x + b * y + z + d | / sqrt(a^2 + b^2 + 1)

The model minimises the sum of the squared distances.

Implementation in C++ Using the Implementation in C++ Using the SmxSmx Library :Library :
//All we need is to define the template function to use in Least Squares
template<class num_t>
num_t funcLine (Array2d<num_t> &p , Array2D<> &data)
{ // return distance

return abs(p[0]* data[0] + p[1]* data[1] + data[2] + p[2]) /
sqrt(p[0]*p[0] + p[1]*p[1] +1);

}
…
// instantiate the least squares object using the template function with
// optional arguments:

nl_lsq<funcLine> lsq(data_points, m, n, need_covar, max_iter);
// generates the lsq object, the function and its gradient
// then we call for minimisation

ret = lsq.minimise(Observation, Parameters);

Algebraic ImplementationAlgebraic Implementation

observation x, y, z;
parameters a, b, d;
//minimise sum {overall observation } (obs - calc)^2

residual:
abs(a * x + b * y + z + d)/ sqrt(a^2 + b^2 + 1);

// reads data points x y z from ‘experiment.dat’ file
data “experiment.dat”;

// then we call for refinement
refine;
print a,b,c; Modelling Language for Crystallography

(Smx.interpreter)
A built-in algebraic modelling language designed around a familiar
crystallographic notation, including an interactive command environment,
to help with the formulation of problems. It includes a full-featured
programming language; possesses a complete set of looping and
conditional statements and allows the crystallographer to formulate
algebraic models for structure determination and analyse data in a clear
and concise way. The model is used then as a basis to generate a
mathematical representation that can be relayed directly to the
optimisation solver.

Refinement and NLS Model Formulation

We consider a general LS model form defined by:
1. X refineable parameter n-vector, in n-space Rn;
2. Yo observation vector
3. W weight vector
4. Y(x) estimated function, f: Rn => R1;
5. D set of admissible parameters, a subset of Rn; defined by:

- l, u explicit, n-vectors finite bounds of x (an embedding ‘box’ in Rn) ;
- g(x) general nonlinear constraint functions,

g: Rn => Rm. (could be empty)
Applying the notation given above, the least squares method is stated

as minimisation of the objective function :
M(x) = sum { overall } W.(Yo – Y(x))^2.

minimise : M(x)
s.t : x in D = { x: l ≤x ≤ u and g(x) ≤0}

where vector inequalities are component-wise

Whether we use C++ or the algebraic model, this environment
provides an easy and natural way to formulate general nonlinear
least squares problems required by small molecule crystallography.
The refinement can be performed simply by specifying the
expression form of the function to be fitted to the data, the desired
residual/objective, as well as constraints and restraints (if any) in an
algebraic notation, without having to indicate anything about the
partial derivatives that a solver might require.

Solvers

Conventional crystallographic solvers are built-in; however, the open
architecture has also enabled some useful external and modern non-
linear solvers to be successfully interfaced to the system.

Solvers included:
- Normal matrix / LU /QR decomposition / SVD, CGradient,
- Generalized Minimum RESidual (GMRES)
- Levenberg - Marquardt non-linear minimisation with bounds on

the parameters or linear constraints
- LBFGS with bounds on the parameters
- and IpOpt with bounds and general constraints

SF Least Squares Snippet Simple Code in C++:SF Least Squares Snippet Simple Code in C++:
{

// smx::sfls::param_anisotropic_anamalous<int sgnumber=-1>

smx::io:cif::CifReader cif(ciffilename);
ScattererList Atoms(cif) ; // + optional Atoms settings, filter ...

// instantiate the SFLS class using functor param_anisotropic_anamalous<>
// and read any extra param from cif, e-g :OverAllscalef, xFlack_param …

smx::sfls:: SfLs< param_anisotropic_anamalous<> > sfls(Atoms, cif);

bool refine_f_square = true;
Reflection hkl(hklfile); // + optional hkl settings ...

sfls.fix_scalefactor();
// Special postions and adp beta-restrictions constraints are handled internally
sfls.refine_positions(); // all positions
sfls.refine_uij(); // all adps
sfls.refine_biso("C3"); // refine atom C3 as isotropic
sfs.set_constraint_eval_jac(eval_jac_g); // eval_jac_g() functor returns the sparsity structure
// of the Jacobian of the constraints, or the values for the Jacobian of the constraints at the point x.

sfls.refine(hkl, refine_f_square);
}

Structure Analyst End-users, Research Crystallographers or Crystallographic Programmers
Once completed, it will be a fundamental building block which will facilitate high quality analyses,
helping to develop and explore the full capability of crystallography upon which other researchers can
build new applications

This system is designed to facilitate the solution of nonlinear least squares and to support
the whole crystallographic modelling life-cycle (building – refining – analyzing – revising). It
is by supporting C++ interfaces and the algebraic modelling for crystallography that this
platform will be accessible by all users including:

Example of implicit linear constraint within the smx.Interpreter:
Consider an atom disordered on 2 positions C1 and C2. The refinement of the site occupation factors should be
subjected to the constraint:

Occ1 + Occ2 = 1 # where Occ1, Occ2 are parameters
Or by using suffix :

Sites[“C1”].Occ + Sites[“C2”].Occ = 1; # where Sites is a set of parameters

This environment enables the user to specify any kind of
relationship between the conventional crystallographic
variables and any novel ones they need to introduce. The
user will find it easy to create crystallographic models of
great complexity with only a few statements.

Declares 2 parameters
Simply assigned values initially
Can be overwritten

Invoke reverse sweep
and reclamation of memory
p(value, adjoint) will hold current value
and adjoint w.r.t. last computed param_t

Example: Use of AD with smx.interpreter
{
parameter p, p2
p = 0.2; p2=6
p = f (p2) * exp(p)

differentiate()

print “r p : “ , p
}

Example with C++
{

smx::ADparam::param_t p,p2;
p = 0.2; p2=6;
p = f (p2) * exp(p);

smx::ADparamEnv::differentiate();

cout << p << endl;
}

Using the meta-programming and template models for all known expressions, we have created a
building block that integrates the AD package and allows all LS refinement, while taking care of
many of the details that formerly had to be specified by the user. The user is now free to
concentrate on the broader aspects of their problem.

Structure Factor Computation
This generic implementation results in more computation efficiency by making use of the structure
factor expression found in International Tables for all the space groups, when identified as
template argument, and by generating the corresponding code, so avoiding a general form
calculation.

Automatic Differentiation:

Automatic differentiation (AD) is a technique for computing derivatives accurately and
efficiently. Uses include: solving nonlinear equations, Sensitivity Analysis (first order),
Parameter identification, Optimization and useful in Verification and Validation. Furthermore,
no limits are imposed on the length or the complexity of the code comprising the function to be
differentiated. Thereby, AD becomes essential and the most important tool in mathematics and
scientific programming.
AD Implementation
C++ specialised overloading operators and templates have been used to implement and
employ the reverse mode AD technique, which is the best known alternative to the forward
mode. Derivatives are accumulated in the reverse order of program execution. Since this
mode needs runtime tracing to store intermediate quantities that are required in the backward-
pass, we have integrated a specialized memory manager/allocator to our implementation.

