The algorithm begins to explore possible mappings between the two input structures, where each mapping is simply a set of atom pairs, and each atom pair consists of one atom from each input structure. We expand each mapping as much as possible, exhausting one search before beginning another (commonly known as depth first search).

Receive results rapidly from text report displayed upon algorithm completion. View mappings in human-readable text form, listed in descending order of size. Even better, display and cycle through mappings in a bespoke 3D renderer, and mouse over an atom in one structure to highlight its mapped counterpart in the other structure.

Our algorithm builds on an expansion \(^1\) of the classic Ullmann algorithm \(^2\). By the nature of Ullmann’s method, connectivity is maintained during structure matching, i.e. there must be the same bonding configuration between the matched atoms in one structure and their counterpart mapped atoms in the other structure. Additionally, we allow tailoring of this graph comparison to successfully match only ‘graph identical’ environments (i.e. same number of bonds), or ‘graph similar’ environments where the definition of similarity is arbitrary to the implementation.

Feature Detection currently under development....

Certain moieties which exhibit high local symmetry may prolong chemical structure matching, since many mapping permutations may be possible between two such equivalent moieties in the input structures. One related problem is that of ‘ring shuffling’ - a linear carbon chain in one structure will repeatedly match with a carbon ring (e.g. benzene) in the other structure, shuffling round the ring by one atom to generate each new match. Our implementation is currently able to rapidly detect all rings present in the input structures. We are putting the final touches to code which detects features described by the user (including rings), and allows more efficient structure matching by avoiding complications such as ring shuffling.

Arbitrary Mappings

Our algorithm purposefully does not consider any spatial information during its search, and instead relies solely on connectivity to match components of our two structures. One consequence of this is that entirely equivalent matches will be generated between the environments of two matched atoms, if one environment contains more than one atom which is chemically identical or similar to the atoms in the first environment. We handle these so-called ‘arbitrary mappings’ by clustering the arbitrary atoms in each structure, and associating a cluster in one structure with the relevant cluster in the other; we then know that all mappings where each atom in one cluster maps to one of the atoms in the other cluster are valid.

Procedural Flowchart