Oct 102017
 

Lewis is working on a project to improve our understanding of modulation in molecular materials by studying analogues of Barluenga’s Reagent.

Away from the lab Lewis enjoys sports including football, rugby, and American football, as well as the odd game of FIFA.

He was inspired to join the group after attending the Structural Methods Options Course. His favourite space group is I-43d and he is equally happy programming in Fortran or Python.

Oct 082017
 

Gwenno is investigating methods for determination of flexible organic molecular structures using the atomic pair distribution function.

Around labs, Gwenno manages to fit in singing, acting, dancing and painting, and enjoys skiing.

 She still prefers programming in Python 2 over Python 3, and her favourite XC functional is LDA (who knew?).
Oct 082017
 

Oli Bar is investigating geometric parameters of metal organic frameworks using data analysis tools and machine learning.

To unwind after a hard day of Python algorithms he plays tennis and badminton, and enjoys swimming. He prefers the non-standard setting of space group 14, P21/n, and at the time of writing he is undecided on his favourite exchange correlation functional.

Oct 082017
 

Kiaora’s research project is to determine the structures of molecules which are liquids at room temperature or otherwise hard-to-crystallize using crystalline host frameworks and/or low temperature in-situ crystallization techniques.

While away from the lab Kiaora indulges in the incompatible sports of baking and swimming.

Her favourite space group is P21/c and she prefers the hydrogen bond over other types of intermolecular interaction.

Oct 082017
 

James is carrying out a research project using molecular dynamics to improve our models of disorder in crystal structures.

James’ favourite undergraduate course was Prof Ritchie’s Quantum Mechanics stuff, and his preferred exchange correlation functional is the classic PBE.

 

Sep 082017
 

The triennial congress of the International Union of Crystallography was held in Hyderabad over 8 days in August 2017.

During the meeting Richard Cooper presented recent work with Jerome Wicker:
Optimizing co-crystal  screens using a data-driven machine learning method

We also took an opportunity to present recent developments in the CRYSTALS software at the IUCr parallel programme Software Fayre:
Advanced restraints in CRYSTALS

Prior to the IUCr meeting, Richard Cooper was a tutor at the Crystallographic Computing School at IISc in Bangalore, organised by the IUCr Commission on Crystallographic Computing, and gave a lecture:
Recent advances in small molecule refinement

 

Photograph by @LouiseDawe

 

 

 

 

 

 

Jul 062017
 

CrystEngComm, 2017, 19, 5336 – 5340 [ doi:10.1039/C7CE00587C ]

A data-driven approach to predicting co-crystal formation reduces the number of experiments required to successfully produce new co-crystals. A machine learning algorithm trained on an in-house set of co-crystallization experiments results in a 2.6-fold enrichment of successful co-crystal formation in a ranked list of co-formers, using an unseen set of paracetamol test experiments.

Publisher’s copy

Jun 202017
 

CrystEngComm, 2017,19, 3737-3745 [ doi:10.1039/C7CE00738H ]

We present here the crystallisation outcomes for 319 publicly available compounds in up to 18 different solvents spread over 5710 individual single solvent evaporation trials. The recorded data is part of a much larger, corresponding in-house database and includes both positive as well as negative crystallisation outcomes. Such data can be used for statistical analyses of solvent performances, machine learning approaches or investigation of the crystallisation behaviour in structurally similar compound classes.

The presented data suggests that crystallisation behaviour in different solvents is not correlated with chemical similarity among clusters of highly similar compounds. Further, our machine learning models can be used to guide the solvent choice when crystallising a compound. In a retrospective evaluation, these models proved potent to reduce the workload to a third of our initial protocol, while still guaranteeing crystallisation success rates greater than 92%.

Publisher’s copy

Apr 202017
 

Congratulations to Part II students Laura Fenwick and James Walker who both won poster prizes awarded by the Chemical Crystallography Group of the British Crystallographic Association at the Annual Spring Meeting in Lancaster.

Laura’s poster “Measuring and controlling dissolution rates of pharmaceutical materials by co-crystal formation” reported dissolution rate studies of tablets of pure paracetamol and co-crystalline forms, and shows a significant increase in dissolution rate of the active ingredient for certain formulations.

James’ poster “Co-crystal or salt? Studying partial proton transfer in a series of molecular materials” reported several crystalline materials which exhibit transfer of a single proton between a significant fraction of the molecular pairs, resulting in a crystal on the borderline between co-crystal and salt.